Once the power figures had been determined and the final standings had been set, the last thing we needed to do was to verify the legality of the winners and also to check on whose parts were used to lock down contingency payments to those who'd earned them. We're proud to say the top three finishers all checked out on the legal end, and we're anxious to share the power formulas responsible for getting them there.

Before we truly begin, there are some people who must be thanked. First and foremost, the crew at Westech Performance Group, without whom the Challenge could not have gone so well. They helped in regional, final, and teardown phases of the competition, and are absolutely top-notch guys we could (and did) depend on.

Also, Mike Cook's technical crew from the Southern California Timing Association deserve a big round of applause. We asked the SCTA guys to perform our teardown dimensional measurements for us as a third party. Everyone knows how good the Bonneville guys are, and everyone knows they do much more than just Bonneville. We asked for their expertise in verifying rules compatibility on our Engine Masters Challenge engines, and they delivered. Many thanks to Mike and his crew!

We also need to thank Scribner plastics. When we had a need for engine crates to safely ship many of our regional qualifiers to SoCal to compete in the Finals, Scribner stepped up and got us some excellent engine crates. If we have a need to ship any engine anywhere in the future, it'll be in a Scribner crate. They are well-engineered and we appreciate having them for the finalist powerplants. Now, on to the engines...

The purpose of the Engine Masters Challenge is to create best-case scenario models our readers can refer to when designing or modifying their own engines, and we've got plenty to share this year. Luckily, with a Ford finishing first, a Chevy finishing second, and a Mopar finishing third, we'll have a wide array of information readers can look to regardless of what make they prefer. It's obvious all three of these engines worked wonderfully, so the average dimensions offer a unique peek at what engines of this size are craving.

We must reiterate the fact these engines are absolutely on the cutting edge of 92-octane performance, and should be looked at with a keen eye. While they did run (and run well) on 92-octane during our dyno testing, the limits were all being pushed. Taking these dimensions and turning them down a notch could provide a genuinely reliable daily driver, but if all the limits are pushed precisely as the engines are presented on the pages, truly reliable street performance cannot be completely guaranteed. The competitors were able to fine-tune these engines in an optimal dyno environment, and we'll be the first to admit they represent "best-case" scenarios on all fronts. Still, they represent models of efficiency capable of being solid blueprints for streetable duty, and those owning street machines boasting similar displacement should take note. In much the same way many feature cars on our pages are used for inspiration and cool ideas, we want our readership to allow these engines to influence their own. Look at the tricks, listen to the tips, and realize the dimensions are maximized. We know our readers wanted to see everything inside these engines, and also to know how they came to be developed. We've worked extensively with the winning builders to deliver this information, and we're proud to share it. Enjoy, and learn.

 

 

FIRST PLACE

JON KAASE
JON KAASE RACING ENGINES
735 W. Winder Industrial Pkwy., Dept. PHR
Winder, GA 30680
(770) 307-0241
www.jonkaaseracingengines.com

Jon Kaase (pronounced KAH-zee) developed a Challenge-winning formula based on a Ford Motorsport A-460 block, but that is only the beginning. Extensive block modifications were completed, drawing on Kaase's extensive experience in IHRA Pro Stock. In his own words, Jon shared the technical developments with us.

"Like most in this business, I love nothing more than healthy competition. Entering the Engine Masters Challenge, I figured there would be plenty. What I'd not anticipated were the rewards of the process itself. There is much that I learned during this experience that will soon find its way into our 815-inch engines. Moreover, I got to better know people I respect with whom I deal on a regular basis and whose work I've long admired. Those with whom I'd not worked before but have gotten to know along the way have, happily, become friends and associates, as well. Forget what the commercial says, this is the stuff that's 'priceless.'

"Our entry's dimensions and chamber design were pretty much finalized after a consult with "W.J." My Pro Stock mentor from nearby Sugar Hill confirmed what I believed to be true: a small chamber with lots of quench and turbulence was the way to go. 'Detonation Prevention 101' soon began, as the whole engine was built on that premise. A long stroke combined with a short rod would produce very fast piston action at top dead center. This should liven things up. I like short rods anyway. Two inches longer than the stroke--it works on a 5.0 Ford as well as an 815-inch IHRA Pro Stocker.

"When planning our Engine Masters Challenge entry, I knew that there would be no going back once I committed to rod length, bore and stroke. Because of the low test rpm range, I felt I needed the longest stroke and smallest bore with which the heads would work. With pump gas, detonation was a huge factor in the design of the short-block and heads. A smaller bore has less chance of detonation because it doesn't have some far-off place for a secondary flame front to start. The 460 Ford block starts out at 4.360, which I felt was too big. The smallest bore the heads would flow reasonably well on was 4.250-inch. The intake valve still had ample room between the valve head and the bore, but the exhaust wouldn't even open until I ground a huge notch in the top of the cylinder. The stroke needed for 468-inch would be 4.125-inch."

THE BLOCK
"The majority of labor in this engine was the in the block. The A-460 block was bought used from Total Performance in Michigan. Since we had to sleeve the bores down, I found some ductile iron sleeves on Darton's web page. Because of the long stroke and short rod, the wrist pin centerline area of the piston extended completely out of the cylinder at BDC. The trick was to bore the block to 4.650-inch, and extend the sleeves down into the crankcase to help support the piston. The sleeves had a small flange at the top, and the bores required a counterbore to keep the sleeves in place, since there was nothing to catch on at the bottom. We used the big O.D. sleeve so it would have wall thickness and strength where it protruded out of the crankcase."

Bearings were all by Clevite, with PN MS963P (2.499-inch diameter) mains and PN CB745H (1.999-inch diameter) rod bearings. All the bearings were anti-friction coated by Calico Coatings. Bearings are now sold pre-coated by Calico.

"Ford's new Super Cobra Jet cylinder head was a perfect match for this competition. The favorable valve placement allows superb airflow at medium valve lifts. In all the testing we've done, they seem to require about ten degrees less cam timing then all other performance cylinder heads. This worked to my advantage, since the less cam timing you have, the better the power will be in the lower third of the rpm band. The spark plug is centrally located in the chamber and requires less timing, which helps with the detonation prone pump gas. A good example of how good these heads are is Randy Malik's number one-qualifying Michigan-based entry. He spent less money on his whole engine than I had in my block and crank! His heads weren't even ported, with just a little grinding in the valve bowls.

"Though our entry's heads appear to have weeks of work in them, that's really not the case. I spent one night welding some fill into the chambers (for more quench area) and another talented long-time friend and associate, Chris Howe, labored two days on porting and valve seat work. We started the testing with full-size intake ports and later shrunk them down, which made very little difference at any rpm."

"I would like to have tried different compression ratios, but in the end it worked out perfectly. At 13.2:1, it was just right for 28.8-inches of barometer. In Memphis, at 29.8-inch, it was a little too much. This high compression would never have worked with a big, lazy chamber. Fortunately, the barometric pressure at Westech was just right for my combination."

The valves are from Victory 1, with the intake valve measuring 2.190-inch and 5.600-inches long. The exhaust valves have 1.695-inch diameter heads, and also measure 5.600-inches long.

"The Victor 460 (PN 2965) by Edelbrock is a wonderful manifold to work with. It makes great power right out of the box, and is hard to improve on. Where the ports meet the cylinder head, I left it the 'as cast' size for initial testing. When we reduced the head's intake port size, the manifold port floors had to be epoxied up to match the head. Toward the end of testing (at the suggestion of Sonny Leonard), we welded half-round ears to the four corner dividing walls in the plenum chamber. This helped about 10 ft.-lbs. from 3,000 to 3,500 rpm, and stayed the same the rest of the way up."

The HVH carb spacer (four hole-to-open) measured 1.8625-inches tall.

"I also ground the intake's plenum entry to a square shape (from the original cloverleaf design) to match the HVH carb spacer."

"I chose the BG King Demon for its adjustability. This proved to be very valuable in dyno tuning the fussy pump gas throughout the entire rpm range. We changed the venturi size several times until the engine would take a steady load at 3,000 rpm, but not lose power at 6,500. We had to find the right combination of venturi size, booster, air bleed, emulsion holes and main jet. Getting all the various components working together was yet another learning experience and no easy task, but, ultimately, I'm glad the adjustability was there." All Jon Kaase's fuel fittings were from Earl's, and he crafted the pieces together from loose stock to get the final product. The Engine Masters Challenge-spec 14x3-inch round air filter was a Cool Blue unit from Accel (by Mr. Gasket) and caries PN KR3007.

The ignition system is comprised of all MSD products, from their 7AL-2 box (PN 7220) through the distributor (PN 8580) to the wires (MSD's Super Conductor 8.5mm) to the coil (MSD's HVC II, PN 8261).

"We used MSD's distributor, plug wires, coil, and control box. I was shocked that the engine needed the same timing at 3,000 as it did at 6,500 rpm. I would have lost a bet on this one as I figured much time would be spent getting the advance curve right. In the end, the distributor was locked with no curve."

Spark plugs are from Accel (PN 762) and were gapped at a typical .035-inch.

Headers are Hooker's Super Competition (PN 6201) for '71 Mustangs with 429/460 engines. The pipes are legal for the Challenge, even though they are multi-piece. While full multi-piece headers were not allowed per the rules, partial multi-piece headers like these (where a single pipe had to be crafted to go outside the unmodified factory frame rail, but the rest of the header was a single-piece unit) were specifically called out as legal per our 2003 rules. If this is the kind of header street guys need to run in cars with tight engine bays, and no mods were required to install them, we're on board. The pipes have a 2.125-inch primary diameter, with a 3.5-inch collector diameter. Primary tube length is a longish 37 inches, which Kaase felt contributed to solid torque figures. These headers will also fit '70-'71 Torinos, Rancheros, and Mercury Montegos with the 429/460 engine. The headers were teamed with Magnaflow mufflers during Challenge testing.

"I'm glad there were almost no choices for headers. I may have gone bankrupt buying different sizes and lengths. The five-year-old Hookers we use for dyno testing were sent to Swain Tech for coating. I was a believer in this heat coating after repeated dyno pulls were made with an unharmed plastic line in close proximity of a primary pipe. I know it would have burned up near an uncoated pipe.

"During the last two days of testing I finally forced myself to hook up the dreaded mufflers. Difficult as it is to believe, this elicited the largest single gain of any parts tested. At least part of the improvement was due to a mistake I made when ordering collector extensions. Looking in the Hooker catalog, I apparently experienced a 'senior' moment and transposed the part number, ordering 3.250-inch diameter collector extensions instead of 3.5-inch. Who ever even heard of 3.250-inch collector extensions? To make them work, I expanded one end to fit over the Magnaflow 3-inch muffler entry. The front end was easier to reduce its diameter to fit INSIDE of the 3.5-inch header collector. This combination of extensions and mufflers increased the low-end torque by 50 ft.-lbs.! I am convinced that the smaller diameter extensions I mistakenly ordered were a large part of the torque gain and may have even made the difference in winning or losing the contest!"

The oil pan is a Moroso part designed for '79-'95 Mustangs/Capris and all other Fox chassis cars with 460 swaps, and chassis mods are not required for it to fit. It was designed by Moroso to clear the factory crossmember and steering linkage when a big 460 is dropped into a Fox chassis, which is precisely the kind of part we wanted to see in the Challenge. It carries Moroso PN 20620 and measures 9-inches deep with a seven-quart capacity. The pan was filled with Royal Purple #41 oil, which has a viscosity rating of 10W-40. Again, for those thinking it would take watery oil to win the Engine Masters Challenge, Kaase proved this was not the case. The lubricant was filtered through a System One filter, which we like due to its serviceable filter element. You can clean it and re-use it instead of having to throw it out, which saves you cash and is better for the environment.

"I would have preferred a front sump pan on this stationary engine, as the pump is in the front. Unfortunately, none of the contingency sponsors offer a front sump 460 pan. I wanted Moroso's money badly enough to devise ways of making their only legal rear sump pan perform efficiently. The theory is that light tension oil rings can't control mass quantities of oil, and as oil works past the rings into the chamber, it will surely detonate and lose power. Any extra oil in the crankcase will try to slow the assembly's rotation (throw a bucket of water into a fan and see if it doesn't slow down)."

The tube you see in the photo is purely for support; the tube carrying oil to the pump runs from the rear of the engine to the front, and can be seen extending from the pickup out of the photo.

"The Calico-coated main and rod bearings were tightly fitted to .002-inch clearance. The stock 3-inch mains need much more oil flow than our engine's 2.5-inch units. The oil from the lifter galleys could not drain through the cam area and dump on the crank because of the covers installed in the cam tunnel. The cam was always submerged in oil for better lubrication and cooling.

"I have countless times seen oil pumps break off in the 460 Ford. To prevent this, we brazed steel gussets to the pump at its weakest point. The pump was also fitted with low-volume 1.1-inch rotors, and the bypass spring was shortened by two coils. The small bearings with tight clearances simply don't require much oil.

"The biggest problem encountered by all of the Challenge entrants was that flat tappet lobes have evolved into very aggressive designs geared toward steel billet satellite welded cam cores. NASCAR engines use these cam cores but require extremely strong valve springs to control the valve action."

Kaase's research cost him three camshafts, for various reasons. Each cam problem caused another rebuild, and his perseverence wouldn't let him stop.

"Another call to Gordon at Comp Cams began rebuild number three and cam number four. Because of the non-effect of the lash changes on cam number three, Gordon decided to go 4 degrees larger on both intake and exhaust. We were now at 256/264, 108-degree CL, .390-inch lobe lift, and .675-inch valve lift. Of course, I had to press all the homemade bearing races off the old cam and re-install them on the new one.

"After much trial and more error, I have a greater understanding and appreciation of flat tappet cams! Thanks goes to Scooter Brothers of Comp Cams for supporting me, and the Engine Masters Challenge as a whole."

That's Scooter congratulating Jon with the Engine Masters Challenge trophy.

The timing belt was by Comp Cams, as were the pushrods. Carrying PN 7918 (intake side; 9.0-inch length) and PN 7755 (exhaust side, 9.4-inches long), the pushrods are moly and plenty stiff for a 6,500 rpm street engine. The 1.73:1 rocker arms are Crane's aluminum full-roller pieces for the 460 Ford. They worked against a set of LSM valve springs, which have a 1.550-inch diameter and 130lbs. of pressure on the seat at their recommended 1.950-inch installed height. The springs carry PN 422 at LSM.

Coolant was circulated by a Weiand mechanical (belt-driven) pump. Jon was the only builder in the Challenge who did not run an electric water pump, and he won. Myths were getting busted all over the place.

"I'd have preferred to run an electric, but Weiand was the only water pump contingency sponsor, and they don't offer one. The mechanical unit worked just fine."

To summarize the details within Kaase's Challenge winning Ford, the starter is a PowerMaster product, and carries PN 9505. It's rated at 200 ft-lbs and is designed to crank over even the toughest high compression 429/460 Ford with ease. The fasteners in Kaase's engine were ARP products. The quality of ARPs hardware has never been questioned, and good ARP bolts are cheap insurance for your heavy engine investment. Kaase relied on Cometic gaskets to seal the deal. We've seen Cometic grow tremendously from the first Engine Masters Challenge, and they're ability to offer custom-crafted products with minimal turnaround time are finding great favor with Challenge participants. Top-quality materials and the ability to create oddball bore size head gaskets that can ship within a couple weeks sure helps.

The engine was coated with Dupli-Color paints and sealed up with Permatex sealants. It looked good and ran great without leakage, so we know both of these products are good, too.

The back of the engine was home to a TCI flywheel and a Lakewood bellhousing. Both of these critical components needed SFI approval to be legal for our Challenge, and this certification means they're plenty tough for street and race use under your car. Safety is a major consideration when buying both high performance flywheels and the bellhousings they'll live in. We'd like to thank Jon Kaase for sharing everything inside his engine so openly with our readers, and to congratulate him once again for proving to all he is this year's Engine Master!

SUMMARY
So, how did participating in the Engine Masters Challenge affect a veteran professional engine builder like Jon, whose engines have won several World Championships?

"I invested year of planning, laboring, and $20,000 in parts; all for those three 12-second Engine Masters Challenge Finals dyno pulls. Just whose idea was this?

"In my 35 years of building race engines I have never been as nervous as I was during those three runs. The last run seemed to take forever. What a relief when it was over, and the final score was 1,178, and I was declared the Winner!

"The one thing I most wanted to do for months was to be able to call home and tell my family and my guys at the shop that I'd won. What an awesome feeling! Now I could touch the trophy.

"I cannot say enough about how great all the people involved in the Engine Masters Challenge were. The competitors were all friendly, like-minded guys, eager to meet one another and exchange stories about their journeys. The crews at both Comp Cams and Westech did everything but spread rose petals for us to walk on.

"Many thanks go out to both Scott Parkhurst and Michael Simpson of Primedia for a wonderful experience. They've given engine builders a place to compete and showcase their talents on a personal level." -- Jon Kaase

CYLINDER HEAD AIRFLOW
(Measured on the Westech Performance Group flowbench after Engine Masters Challenge completion, as part of Teardown inspection)
INTAKE VALVEEXHAUST VALVE
Valve opening inches Airflow cfm at 28 inches depressionValve opening inches Airflow cfm at 28 inches
.05033 cfm0.50 23 cfm
0.10066 cfm0.100 52 cfm
0.200 147 cfm0.200 100 cfm
0.300 222 cfm0.300 147 cfm
0.400 290 cfm0.400 190 cfm
0.500 340 cfm0.500 225 cfm
0.600365 cfm0.600 246 cfm
0.700386 cfm0.700 255 cfm
0.800397 cfm0.800260 cfm

 

ENGINE PARTMANUFACTURERPART NUMBER
BLOCKFORD MOTORSPORTM-6010-A460
HEADSFORD MOTORSPORTM-6049-SCJ
CRAKKSHAFTBRYANT RACING2357-1
INTAKE MANIFOLDEDELBROCK2965
CARB SPACERHVHSS4500-2
VALVESVICTORY-1TF/721, TF/716
RETAINERSMANLEY23654
SPRING CUPSMANLEY42377
VALVE LOCKSCOMP CAMS611-16
VALVE SEALSUNIVERSAL MOLDED166
HEAD GASKETSCOMETICC-5745
RODSCARRILLO17657
OIL PANMOROSO20625
OIL PICKUPMOROSO24508
BREATHERSMOROSO68815
A-N LINES/FITTINGSEARL'S-------
ROCKER ARMSCRANE CAMS27771-16
ROCKER ARM STUDSARP235-7203
GUIDE PLATESFORD MOTORSPORTM-6566-SCJ
STUD GIRDLEJOMAR1143/1416
VALVE COVERSUNIQUE ALUMINUMFORD 460
VALVE COVER GASKETSEARL'SEAR 29E04A
MAIN BEARINGSCLEVITEMS963P
MAIN BEARING COATCALICOCT-1
ROD BEARINGSCLEVITECB745H
ROD BEARING COATCALICOCT-1
CAM BEARINGSLSM ENG.60 MM ROLLER
OIL PUMPFORD MOTORSPORTM-6600-A460
OIL PUMP DRIVE RODFORD MOTORSPORTM-6605-A429
OIL FILTER ADAPTERFORD MOTORSPORTM-6880-A50
MISC. ENGINE GASKETSFORD MOTORSPORTM-6003-A429
REAR MAIN SEALUNIVERSAL MOLDED23460
CYLINDER SLEEVESDARTON INT'L4.650 BLANK
MAIN SLEEVESDARTON INT'L3.250 BLANK
MUFFLERSMAGNAFLOW12219
FRONT COVERA.T. FRANCISFC-429
FRONT MAIN SEALUNIVERSAL MOLDED5282
WATER PUMPWEIAND8211 WIN
OIL FILTERSYSTEMS 1512561 BP
SPARK PLUGSACCEL762
SPARK PLUG WIRESMSD31189
DISTRIBUTORMSD8380
IGNITION SYSTEMMSD7-AL-2
COILMSD8261
BRONZE DIST. GEARMSD8581
HARMONIC BALANCERATI917520
LIFTERSREED CAMS11115
CARBURETORBARRY GRANT97280 20
WRIST PINSHOFFMAN/ANATECH.990/2.930
PISTONSVENOLIA4881/127973
PISTON FRICTON COATCALICOCT-3
PISTON RINGSSPEED PRO/TOTAL SEALBR18PF046
CAMSHAFTCOMP CAMSFF7411-7413-108
TIMING CHAIN SETCOMP CAMS3122
PUSHRODSCOMP CAMS7918/7755
VALVE SPRINGSLSM ENG.422
ROLLER THRUST PLATEDANNY BEE1520
CAM DOWEL PINSDANNY BEE1550
FLEXPLATETCI529742
DYNO DRIVE HUBINNOVATION ENG.5069
BELLHOUSINGLAKEWOOD / GASKET451396
HEADERSHOOKER HEADERS6201
HEADER COATINGSWAIN TECH------
STARTERPOWERMASTER9505
RACING OILROYAL PURPLE#41
ENGINE PAINTDUPLICOLORDS-100
AIR FILTERACCEL3007

Page 1 | Page 2 | Page 3